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Motivations. Unstructured overlays form an important class of peer-to-peer
networks, notably for content-based searching algorithms. Being able to build
overlays with low diameter, that are resilient to unpredictable joins and leaves, in
a totally distributed manner is a challenging task. Random graphs exhibit such
properties, and have been extensively studied in literature. Cyclon algorithm
is an inexpensive gossip-based membership management protocol described in
detail in [1] that meets these requirements.
An Overview of Cyclon. For a detailed description of Cyclon algorithm, the
reader should refer to [1]. Briefly, Cyclon supports two different modes of oper-
ation : a basic shuffling mode, and an enhanced one. The basic mode, the only
one to be studied in this article is a purely random mode, while the second mode
uses a timestamp mechanism to improve performance with respect to node fail-
ures behavior. Each node maintains a cache of neighbor nodes of size c, hence
each node knows exactly c nodes in the overlay. To correctly initialize nodes
caches, we assume the existence of a predefined set of well-known supernodes.
During the execution of the protocol, each node performs periodically a shuffle
step. For a given node p, a shuffle step consists in contacting one node q among
its neighbors. Then p and q exchange ℓ ≤ c nodes from their respective caches.
ℓ is a parameter of the algorithm. Counterintuitively, simulations in [1], have
shown that the i nfluence of parameter ℓ is negligible (except for limit cases,
when ℓ is close to 1 or c). One of the most fundamental operation performed
by the shuffling step is that p sends its own identity to q, and remove q from
its own cache. Consequently, the edge from p to q is reversed by the shuffling
step. This guarantees the connectivity of the underlying overlay. In this paper,
we propose two models to analyse Cyclon performances in term of convergence
speed, and quality of the obtained overlay. In our work we evaluate this quality
from the distribution of the in-degree4 of nodes. We are interested by this distri-
bution since it is highly related to the robustness of the overlay in the presence of
failures. This gives also an indication of the distribution of resource usage (pro-
cessing, bandwidth) across node s. We are looking for a distribution as uniform
as possible.

4 The number of nodes that have an edge directed to the considered node. It is an
integer in [0, n− 1] since we do not authorized loop edges.



Model #1. We assume that there are n nodes in the system, gossip exchanges
are atomic, and are triggered by a global scheduler which picks at random the
next process to perform a shuffle operation with uniform probability. This is
of course, a rather coarse model of reality, where each process would certainly
locally triggers its shuffling operation, using timeout expiration. In fact this
model corresponds to a complete asynchronous system; even though this model
is questionable (see [2]) it has been introduced by [3] and [4]. With this random
scheduling a given process has probability 1− e−1 of taking at least one compu-
tation step, when exactly n steps are triggered. This must be compared to a real
system based on local uniform time triggers, where the same process would have
probability 1 to perform a step, every n steps counted globally. We are interested
in evaluating the in-degree evolution of a given node since it is a good measure
of the quality of the obtained overlay. We model Cyclon algorithm by a discrete
time Markov chain (DTMC) whose states space S is the possible in-degrees for
a given process. Note that we can focus on a particular process because they are
all equivalent with respect to the scheduler. The evolution of the in-degree of a
node after a shuffle step depends only on its value before the step; the impact of
the detailed structure of the network is negligible. Moreover during a step, the
in-degree can only change by one. Thus, the n-square matrix M1 associated to
this DTMC is a tridiagonal one. Its upper diagonal is m1
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k ∈ [0, n − 1]. In particular we obtain for k = 0, a closed form for the gener-
ating function π(z) associated with the stationary distribution π = v1, namely
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. This corre-

sponds exactly to the in-degree distribution of a purely random directed graph
where each vertex has exactly c outgoing edges, a highly desirable property for
unstructured overlays. Using well-known properties on generating functions we
can establish that the mean value π of stationary distribution is equal to c, which
naturally satisfies the balance equation in a directed graph6. Similarly we can
establish that standard deviation of π is equal to c+O(1/n). Since we have ac-
cess to the eigenvalues, and in particular the second largest one, namely 1− 1
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,

we can establish an upper bound on the convergence speed of the DTMC. Using

classical linear algebra, we can show that maxX0
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where X0 denotes the initial distribution. Mixing time τ1(ǫ) as defined in [5] is

5 vλ is such that vλM1 = λvλ for a given λ called an eigenvalue of M1.
6 The number of outgoing edges, nc in this particular case, is equal to the number of
ingoing edges, which is equal to nπ



thus bounded by nc log ǫ−1 + O(1), which shows that Cyclon is a fast mixing
algorithm 7.
Model #2. We consider a more refined model, where processes are fairly sched-
uled. We consider now that a step in our model corresponds to a whole cycle
of the protocol, i.e. in a step every node performs one and exactly one shuf-
fle. Contrary to model #1, this model corresponds to a synchronous system:
all nodes execute the same number of exchanges and at the same time. This
refinement comes at the price of a more complex stochastic matrix M2. The
evolution of the in-degree of a node after a (model) step still depends only on its
value before the step, but its variation may now be larger than one. In particu-
lar, M2 is an lower hesselberg8 matrix whose general term is m2
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cessive derivatives G
(k≥0)
λ (z) at point z = 1. For λ = 1, by using a Taylor series

expansion, and by the fact that G1(z) is a polynomial of degree n−1, we have ac-
cess to a closed formula for π(z) the generating function associated to the station-

ary distribution of the considered DTMC, namely π(z) =
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For λ 6= 1, the fact that Gλ(z) is a polynomial of degree n − 1 can be ex-
pressed as a set of constraints on the successive derivatives at point z = 1,

namely G
(k≥n)
λ (1) = 0. These constraints reduce to a polynomial of degree n− 1

whose roots are exactly the n − 1 eigenvalues λ < 1. We show that the second
largest eigenvalue is smaller than 1− 1

c
. Hence mixing time τ2(ǫ) is bounded by

c log ǫ−1 + O(1). Note that this is compatible with model #1. Indeed in model
#2, each step of the Markov process corresponds to n steps of the previous

Markov process. This explains why τ1(ǫ)
τ2(ǫ)

= n. The reader is invited to refer to [6]

for a detailed version of the results.
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